Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenetic protein.

نویسندگان

  • K Shirai
  • A Ishisaki
  • T Kaku
  • M Tamura
  • Y Furuichi
چکیده

BACKGROUND AND OBJECTIVE A blood supply is indispensable for the regeneration of damaged or lost periodontal ligament (PDL) tissue. Mesenchymal stem cell-like activity of cells derived from the PDL has been identified by their capacity to form fibrous and osseous tissue and cementum. However, it remains to be clarified whether the cells have an ability to build the capillary network of blood vessels. This study evaluated the potential of cells derived from the PDL to construct a blood vessel-like structure and examined how growth factors controlled the multipotency of the cells. MATERIAL AND METHODS The ability of a swine PDL fibroblast cell line, TesPDL3, to construct a blood vessel-like structure was evaluated on and in the self-assembling peptide scaffold, PuraMatrix(TM). In addition, the ability of the cells to form mineralized nodules was evaluated on type I collagen-coated plastic plates. In some cases, fibroblast growth factor (FGF)-2 and bone morphogenetic protein (BMP)-2 were added to these cultures. The status of the expression of vascular and osteoblastic cell-specific markers in the cells was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence analyses. RESULTS The TesPDL3 cells not only formed mineralized nodules in response to BMP-2 stimulation but also constructed tube-like structures in response to FGF-2 stimulation. Intriguingly, FGF-2 inhibited the BMP-2-induced formation of mineralized nodules. Conversely, BMP-2 inhibited the FGF-2-induced formation of tube-like structures. CONCLUSION Periodontal ligament fibroblasts have the potential to differentiate not only into osteoblastic but also into vascular cell lineages. The destiny of the cells was reciprocally regulated by BMP-2 and FGF-2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts.

The successful regeneration of periodontal tissues is dependent, in part, on the ability of cells to reconstitute the mineralized tissues of cementum and bone. The aim of the present study was to characterize regeneration-associated cells in terms of their ability to express mineralized tissue macromolecules. Following guided tissue regeneration, cell cultures were established from regenerating...

متن کامل

فاکتورهای رشد و پریودنتولوژی امروز

Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and differentiation by acting on specific receptors on the surface of cells and regulating events in wound healing.They can be considered hormones that are not released in to the blood stream but have one a local action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion ...

متن کامل

Differential effects of TGF-β1 and FGF-2 on SDF-1α expression in human periodontal ligament cells derived from deciduous teeth in vitro.

Stromal cell-derived factor (SDF)-1α has been reported to play a crucial role in stem cell homing and recruitment to injured sites. However, no information is available about its role in periodontal tissues. The aim of this in vitro study was to investigate the effects of basic fibroblast growth factor (FGF-2) and transforming growth factor (TGF)-β1 on SDF-1α expression in immortalized periodon...

متن کامل

Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs

Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of periodontal research

دوره 44 2  شماره 

صفحات  -

تاریخ انتشار 2009